If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+20k+84=-15
We move all terms to the left:
k^2+20k+84-(-15)=0
We add all the numbers together, and all the variables
k^2+20k+99=0
a = 1; b = 20; c = +99;
Δ = b2-4ac
Δ = 202-4·1·99
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2}{2*1}=\frac{-22}{2} =-11 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2}{2*1}=\frac{-18}{2} =-9 $
| 6z+8=10z | | .9(2x+15)=45 | | 12g+11=17 | | 4x²-22x-96=0 | | x/5+3=-10 | | 20x+2x^2=100 | | 20t+2t^2=100 | | x+76+x=180 | | -9-m=1 | | 5x-4+x+7+4x+17=180 | | 17x-58+2x+29=180 | | 6i-20=46 | | 5x^2-50x=-125 | | {j}{-2}+7=-12−2j+7=−12 | | 18+2r=36 | | 3v2-75=3(v+5)(v-5) | | 19x+25=12x+32 | | 3x-12+x+2=150 | | 7x-9=5x-9 | | 4k=3=11 | | 3x-50=5x-96 | | 6x+14=158 | | 4x+110+66=180 | | 2x+55=66 | | x^2-200x+4950=0 | | 12m+50=948.88 | | 45+9u=18u | | x+84=3x+-84 | | 4·(9x-8)=76 | | x+x*3-x*3=16 | | x+55=6x-40 | | 11x+89+10x+28=180 |